By Ertanto Vetra

EVALUATING PROPERTIES FOR A PURE SUBSTANCES

Outlines

- TV, PV, PT, PVT Diagram
- Property Tables
- Introduction to Enthalpy
- Reference State & Reference Values
- Ideal Gas Equation of State
- Compressibility Factor
- Other Equation of State

Phase, Pure Substances

- PHASE refers to a quantity of matter that is homogeneous throughout in <u>both chemical</u> <u>composition and physical structure</u>
- **PURE SUBSTANCE** is one that is uniform and invariable in <u>chemical composition</u>

Pure Substances

- A pure substance does not have to be of a single chemical element or compound
- A mixture of various chemical elements or compounds also qualifies as a pure substance as long as the mixture is homogeneous, example : Air

FIGURE 3-1

Nitrogen and gaseous air are pure substances.

Pure Substance on Different Phases

- A mixture of two or more phases of a pure substance is still a pure substance as long as the chemical composition of all phases is the same. For example:
 - A mixture of ice and liquid water, is a pure substance
 - A mixture of liquid air and gaseous air, however, is not a pure substance

Sub-cooled, Saturated, Superheated

6

PVT diagram

T-V Diagram

P-V diagram

Superheated vs Saturated vs. Subcooled

Compared to saturated vapor, superheated vapor is characterized by Lower pressures ($P < P_{sat}$ at a given T) Higher tempreatures ($T > T_{sat}$ at a given P) Higher specific volumes ($v > v_g$ at a given P or T) Higher internal energies ($u > u_g$ at a given P or T) Higher enthalpies ($h > h_g$ at a given P or T)

In general, a compressed liquid is characterized by Higher pressures ($P > P_{sat}$ at a given T) Lower tempreatures ($T < T_{sat}$ at a given P) Lower specific volumes ($v < v_f$ at a given P or T) Lower internal energies ($u < u_f$ at a given P or T) Lower enthalpies ($h < h_f$ at a given P or T)

Property Tables, Evaluating P, V, T Vapor & Liquid Tables

• Moran, Table A-4 \rightarrow Superheated Water Vapor

Ргор	erties or	Supernea	ated wate	er vapor					
T	v	u	h	5	v	u	h	5	
°C	m³/kg	kJ/kg	kJ/kg	kJ∕kg · K	m³/kg	kJ/kg	kJ/kg	kJ∕kg · K	
p = 0.06 bar = 0.006 M				MPa	p	= 0.35 ba	r = 0.035 l	MPa	
		$(T_{sat} =$	36.16°C)			$(T_{sat} = 72.69^{\circ}C)$			
Sat.	23.739	2425.0	2567.4	8.3304	4.526	2473.0	2631.4	7.7158	
80	27.132	2487.3	2650.1	8.5804	4.625	2483.7	2645.6	7.7564	
120	30.219	2544.7	2726.0	8.7840	5.163	2542.4	2723.1	7.9644	
160	33.302	2602.7	2802.5	8.9693	5.696	2601.2	2800.6	8.1519	
200	36.383	2661.4	2879.7	9.1398	6.228	2660.4	2878.4	8.3237	
240	39.462	2721.0	2957.8	9.2982	6.758	2720.3	2956.8	8.4828	
280	42 540	27815	2026.8	0.4464	7 2 8 7	2780.0	2026.0	8 6214	
200	42.540	2701.5	2116 7	9.4404	7.207	2700.9	2116.1	8 7712	
320	45.010	2043.0	3110.7	9.5059	7.015	2042.5	3110.1	8.0024	
300	40.090	2905.5	3197.7	9./180	0.344	2905.1	3197.1	0.9034	
400	51.774	2969.0	3279.6	9.8435	8.872	2968.6	3279.2	9.0291	
440	54.851	3033.5	3362.6	9.9633	9.400	3033.2	3362.2	9.1490	
500	59.467	3132.3	3489.1	10.1336	10.192	3132.1	3488.8	9.3194	

Property Tables, Evaluating P, V, T Vapor & Liquid Tables

• Moran, Table A-5 \rightarrow Sub-cooled Liquid Water

TABLE A-5

Properties of Compressed Liquid Water

°C	$v \times 10^3$	u	h	s	$v \times 10^3$	u	h	s		
	m ³ /kg	kJ/kg	kj/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K		
		p = 25 bar $(T_{sat} = 2)$	r = 2.5 MPa 223.99°C)		p = 50 bar = 5.0 MPa (T _{sat} = 263.99°C)					
20	1.0006	83.80	86.30	.2961	.9995	83.65	88.65	.2956		
40	1.0067	167.25	169.77	.5715	1.0056	166.95	171.97	.5705		
80	1.0280	334.29	336.86	1.0737	1.0268	333.72	338.85	1.0720		
100	1.0423	418.24	420.85	1.3050	1.0410	417.52	422.72	1.3030		
140	1.0784	587.82	590.52	1.7369	1.0768	586.76	592.15	1.7343		
180	1.1261	761.16	763.97	2.1375	1.1240	759.63	765.25	2.1341		
200	1.1555	849.9	852.8	2.3294	1.1530	848.1	853.9	2.3255		
220	1.1898	940.7	943.7	2.5174	1.1866	938.4	944.4	2.5128		
Sat.	1.1973	959.1	962.1	2.5546	1.2859	1147.8	1154.2	2.9202		

Exercise

- Find the following:
 - Saturation Temperature of Water at 10 MPa
 - Specific Volume of Water Vap. at 10 MPa, 600 °C
 - Specific Volume of Liq. Water at 10 MPa, 100 °C
 - Specific Volume of Water Vap. at 10 Bar, 215 °C

Linear Interpolation

3.7 The following table lists temperatures and specific volumes of water vapor at two pressures:

p =	1.0 MPa	p = 1.5 MPa			
T (°C)	ν(m³/kg)	T (°C)	v(m³/kg)		
200	0.2060	200	0.1325		
240	0.2275	240	0.1483		
280	0.2480	280	0.1627		

Data encountered in solving problems often do not fall exactly on the grid of values provided by property tables, and *linear interpolation* between adjacent table entries becomes necessary. Using the data provided here, estimate

(a) the specific volume at $T = 240^{\circ}$ C, p = 1.25 MPa, in m³/kg. (b) the temperature at p = 1.5 MPa, v = 0.1555 m³/kg, in °C.

(c) the specific volume at T = 220°C, p = 1.4 MPa, in m³/kg.

Enthalpy

- Energy Balance : U = Q + W
- At constant Pressure : $U = Q - PdV \rightarrow Q = U + PdV$
- At constant Volume : $U = Q - PdV \rightarrow Q = U$
- For convenience, we define a new variable: Enthalpy (H) = U + PV (in Energy Unit) Per unit mass:

 $h = u + Pv \rightarrow easier to tabulate$

Property Tables, Evaluating P, V, T Saturation Tables

• Moran, Table A-2 \rightarrow Temperature Table

I	TABLE	A-2 Prop	perties of S	aturated Wate	er (Liquid-	Vapor): Te	emperatur	re Table				
pre 1 b	1 bar = 0.1 MPa		Specific Volume m ³ /kg		Internal Energy kJ/kg		Enthalpy kJ/kg			Entropy kJ/kg · K		
ī	Temp. ℃	Press. bar	Sat. Liquid $v_f \times 10^3$	Sat. Vapor v _g	Sat. Liquid <i>u</i> t	Sat. Vapor <i>u</i> g	Sat. Liquid <i>h</i> r	Evap. h _{fg}	Sat. Vapor h _g	Sat. Liquid <i>s</i> t	Sat. Vapor <i>s</i> g	Temp. °C
	.01	0.00611	1.0002	206.136	0.00	2375.3	0.01	2501.3	2501.4	0.0000	9.1562	.01
	4	0.00813	1.0001	157.232	16.77	2380.9	16.78	2491.9	2508.7	0.0610	9.0514	4
	5	0.00872	1.0001	147.120	20.97	2382.3	20.98	2489.6	2510.6	0.0761	9.0257	5
	6	0.00935	1.0001	137.734	25.19	2383.6	25.20	2487.2	2512.4	0.0912	9.0003	6
	8	0.01072	1.0002	120.917	33.59	2386.4	33.60	2482.5	2516.1	0.1212	8.9501	8
	10	0.01228	1.0004	106.379	42.00	2389.2	42.01	2477.7	2519.8	0.1510	8.9008	10
	11	0.01312	1.0004	99.857	46.20	2390.5	46.20	2475.4	2521.6	0.1658	8.8765	11
	12	0.01402	1.0005	93.784	50.41	2391.9	50.41	2473.0	2523.4	0.1806	8.8524	12
	13	0.01497	1.0007	88.124	54.60	2393.3	54.60	2470.7	2525.3	0.1953	8.8285	13
	14	0.01598	1.0008	82.848	58.79	2394.7	58.80	2468.3	2527.1	0.2099	8.8048	14
	15	0.01705	1.0009	77.926	62.99	2396.1	62.99	2465.9	2528.9	0.2245	8.7814	15
	16	0.01818	1.0011	73.333	67.18	2397.4	67.19	2463.6	2530.8	0.2390	8.7582	16
	17	0.01938	1.0012	69.044	71.38	2398.8	71.38	2461.2	2532.6	0.2535	8.7351	17
	18	0.02064	1.0014	65.038	75.57	2400.2	75.58	2458.8	2534.4	0.2679	8.7123	18
	19	0.02198	1.0016	61.293	79.76	2401.6	79.77	2456.5	2536.2	0.2823	8.6897	19

Property Tables, Evaluating P, V, T Saturation Tables

• Moran, Table A-3 \rightarrow Pressure Table

ar = 0.1 MPa = $10^2 kPa$		Specific Volume m ³ /kg		Internal Energy kJ/kg		Enthalpy kJ/kg			Entropy kJ/kg · K		
ress. bar	Temp. ℃	Sat. Liquid $v_f \times 10^3$	Sat. Vapor v _g	Sat. Liquid <i>u</i> r	Sat. Vapor u _s	Sat. Liquid <i>h</i> t	Evap. h _{tg}	Sat. Vapor h _g	Sat. Liquid <i>s</i> t	Sat. Vapor s _g	Press. bar
0.04	28.96	1.0040	34.800	121.45	2415.2	121.46	2432.9	2554.4	0.4226	8.4746	0.04
0.06	36.16	1.0064	23.739	151.53	2425.0	151.53	2415.9	2567.4	0.5210	8.3304	0.06
0.08	41.51	1.0084	18.103	173.87	2432.2	173.88	2403.1	2577.0	0.5926	8.2287	0.08
0.10	45.81	1.0102	14.674	191.82	2437.9	191.83	2392.8	2584.7	0.6493	8.1502	0.10
0.20	60.06	1.0172	7.649	251.38	2456.7	251.40	2358.3	2609.7	0.8320	7.9085	0.20
0.30	69.10	1.0223	5.229	289.20	2468.4	289.23	2336.1	2625.3	0.9439	7.7686	0.30
0.40	75.87	1.0265	3.993	317.53	2477.0	317.58	2319.2	2636.8	1.0259	7.6700	0.40
0.50	81.33	1.0300	3.240	340.44	2483.9	340.49	2305.4	2645.9	1.0910	7.5939	0.50
0.60	85.94	1.0331	2.732	359.79	2489.6	359.86	2293.6	2653.5	1.1453	7.5320	0.60
0.70	89.95	1.0360	2.365	376.63	2494.5	376.70	2283.3	2660.0	1.1919	7.4797	0.70

Table A.3-A.5 is also known as **Steam Tables**

Example

3.9 Determine the volume change, in ft³, when 1 lb of water, initially saturated liquid, is heated to saturated vapor while pressure remains constant at 1.0, 14.7, 100, and 500, each in lbf/in.² Comment.

Mixture of Vapor & Liquid

Example

3.16 Two kg of a two-phase, liquid-vapor mixture of carbon dioxide (CO₂) exists at -40° C in a 0.05 m³ tank. Determine the quality of the mixture, if the values of specific volume for saturated liquid and saturated vapor CO₂ at -40° C are $v_f = 0.896 \times 10^{-3} \text{ m}^3/\text{kg}$ and $v_g = 3.824 \times 10^{-2} \text{ m}^3/\text{kg}$, respectively.

3.17 Each of the following exercises requires evaluating the quality of a two-phase liquid–vapor mixture:

(a) The quality of a two-phase liquid-vapor mixture of H₂O at 40°C with a specific volume of 10 m³/kg is

(i) 0, (ii) 0.486 (iii) 0.512, (iv) 1.

(b) The quality of a two-phase liquid-vapor mixture of propane at 20 bar with a specific internal energy of 300 kJ/kg is (i) 0.166, (ii) 0.214, (iii) 0.575, (iv) 0.627.

(c) The quality of a two-phase liquid-vapor mixture of Refrigerant 134a at 90 lbf/in.² with a specific enthalpy of 90 Btu/lb is (i) 0.387, (ii) 0.718, (iii) 0.806, (iv) 0.854.

(d) The quality of a two-phase liquid-vapor mixture of ammonia at -20°F with a specific volume of 11 ft³/lb is (i) 0, (ii) 0.251, (iii) 0.537, (iv) 0.749.

Reference state & reference values

- u, h, and $s \neq$ direct measurement
- u, h, and s = calculated from experiment
- When applying the energy balance, it is differences in internal, kinetic, and potential energy between two states that are important, and not the values of these energy quantities at each of the two states.
- Remember to check what is the reference state & reference values used by the data tables

Energy Balance using Property Tables

- Water contained in a piston-cylinder assembly undergoes two processes in series from an initial state where the pressure is 10 bar and the temperature is 400°C.
 - Process 1–2 : The water is cooled as it is compressed at a constant pressure of 10 bar to the saturated vapor state.
 - Process 2–3: The water is cooled at constant volume to 150°C.
- a) Sketch both processes on T–v and p–v diagrams.
- b) For the overall process determine the work, in kJ/kg.
- c) For the overall process determine the heat transfer, in kJ/kg.

Specific Heat (Cv & Cp)

$$k = \frac{c_p}{c_v}$$

Incompressible Substance Model

• Incompressible : applicable for liquids, solids

TAKE NOTE...
For a substance modeled
as incompressible,

$$v = constant$$

 $u = u(T)$
 $h(T, p) = u(T) + pv$
differentiating Eq. above with respect to temperature
while holding pressure fixed obtains:
 $\left(\frac{\partial h}{\partial T}\right)_p = \frac{du}{dT}$
 $c_p = c_v$ (incompressible)
 $u_2 - u_1 = c(T_2 - T_1)$
 $h_2 - h_3 = c(T_2 - T_1)$ (incompressible, constant c)

Negligible

Ideal Gas Model

Ideal Gas Equation of State (EOS)

pV = mRT $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$

$$pv = RT$$

$$u = u(T)$$

$$h = h(T) = u(T) + RT$$

Fig. 3.10 Sketch of $p\overline{v}/T$ versus pressure for a gas at several specified values of temperature.

$$\lim_{p \to 0} \frac{p\overline{v}}{T} = \overline{R}$$

Compressibility Factor

 A measure of deviation from Ideal Gas behavior

- 1. At very low pressures ($P_R \ll 1$), gases behave as an ideal gas regardless of temperature (Fig. 3–52),
- 2. At high temperatures ($T_R > 2$), ideal-gas behavior can be assumed with good accuracy regardless of pressure (except when $P_R \gg 1$).
- 3. The deviation of a gas from ideal-gas behavior is greatest in the vicinity of the critical point (Fig. 3–53).

FIGURE 3–50

The compressibility factor is unity for ideal gases.

General Compressibility data, Z-chart

 $p_{\rm R} = p/p_{\rm c}$ $T_{\rm R} = T/T_c$

In this lecture, only single component is considered. Multi-component Z-value will not be covered

Other Equation of State

Van der Waals Equation of State Beattie-Bridgeman Equation of State

$$\left(P + \frac{a}{v^2}\right)(v - b) = RT \qquad P = \frac{R_u T}{\overline{v}^2} \left(1 - \frac{c}{\overline{v}T^3}\right)(\overline{v} + B) - \frac{A}{\overline{v}^2}$$

Benedict-Webb-Rubin Equation of State

$$P = \frac{R_u T}{\overline{\nu}} + \left(B_0 R_u T - A_0 - \frac{C_0}{T^2} \right) \frac{1}{\overline{\nu}^2} + \frac{b R_u T - a}{\overline{\nu}^3} + \frac{a \alpha}{\overline{\nu}^6} + \frac{c}{\overline{\nu}^3 T^2} \left(1 + \frac{\gamma}{\overline{\nu}^2} \right) e^{-\gamma/\overline{\nu}^2}$$

And still many more....

ΔU, ΔH, Cp, Cv Relations

$$u(T_2) - u(T_1) = \int_{T_1}^{T_2} c_v(T) dT$$
 (ideal gas)

$$h(T_2) - h(T_1) = \int_{T_1}^{T_2} c_p(T) dT$$
 (ideal gas)

For ideal gas:

$$h = h(T) = u(T) + RT$$

$$c_p(T) = c_v(T) + R$$
 (ideal gas)

Using Specific Heat Function

$$\frac{\overline{c}_p}{\overline{R}} = \alpha + \beta T + \gamma T^2 + \delta T^3 + \varepsilon T^4$$

T is in K, equations valid from 300 to 1000 K

Gas	α	$\beta imes 10^3$	$\gamma imes 10^6$	$\delta imes$ 10 9	$\varepsilon \times 10^{12}$
CO	3.710	-1.619	3.692	-2.032	0.240
CO2	2.401	8.735	-6.607	2.002	0
H ₂	3.057	2.677	-5.810	5.521	-1.812
H ₂ O	4.070	-1.108	4.152	-2.964	0.807
02	3.626	-1.878	7.055	-6.764	2.156
N ₂	3.675	-1.208	2.324	-0.632	-0.226
Air	3.653	-1.337	3.294	-1.913	0.2763
S0 ₂	3.267	5.324	0.684	-5.281	2.559
CH ₄	3.826	-3.979	24.558	-22.733	6.963
C ₂ H ₂	1.410	19.057	-24.501	16.391	-4.135
C₂H₄	1.426	11.383	7.989	-16.254	6.749

In some cases, constant Cp or Cv may be assumed

Energy Balance using Ideal Gas Tables

• Table for Ideal Gas can be found in Table A.22 and A.23

TABLE A-22

Ideal Gas Properties of Air

	$T(K), h and u(kJ/kg), s^{\circ}(kJ/kg \cdot K)$										
				when 4	$\Delta s = o^{i}$					when Δ	s = 0
Τ	h	u	5 °	p,	v,	T	h	u	5 °	p,	U,
200	199.97	142.56	1.29559	0.3363	1707.	450	451.80	322.62	2.11161	5.775	223.6
210	209.97	149.69	1.34444	0.3987	1512.	460	462.02	329.97	2.13407	6.245	211.4
220	219.97	156.82	1.39105	0.4690	1346.	470	472.24	337.32	2.15604	6.742	200.1
230	230.02	164.00	1.43557	0.5477	1205.	480	482.49	344.70	2.17760	7.268	189.5
240	240.02	171.13	1.47824	0.6355	1084.	490	492.74	352.08	2.19876	7.824	179.7

Note that this table is different from Table A.2-A-18, since this table is only applicable for <u>Ideal Gas</u>

Exercise

- A rigid tank contains 50 kg of saturated liquid water at 90°C. Determine the pressure in the tank and the volume of the tank.
- A piston-cylinder device contains 2 ft3 of saturated water vapor at 50-psia pressure. Determine the temperature and the mass of the vapor inside the cylinder
- A mass of 200 g of saturated liquid water is completely vaporized at a constant pressure of 100 kPa. Determine;
 - a. the volume change
 - b. the amount of energy transferred to the water

Exercise

 determine the specific enthalpy of Refrigerant-22 when its temperature is 12°C and its specific internal energy is 144.58 kJ/kg.

Homework #4 due on Tuesday, March 13th

- Create a summary of Key Learning Points from Chapter 1-3, in one page of Plain Duplex A4, It can contain:
 - Equations
 - Important Conversion Factors
 - Theory, Concepts, Definition
 - Sketches/Diagram
 - Problem example with solution
 - Other important Key Learning Points
- Must be <u>Hand written</u>, using non-black pen (Blue/Red/etc)
- Fit as many information as possible, small writing is encouraged (as long as you can read it), utilize every space available
- This summary will be a part of your notes for Mid-Exam (you'll be allowed to bring 2 pages of this summary)