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Internal Combustion Engines

 Although most gas turbines are also internal

combustion engines, the name is usually applied to
reciprocating internal combustion engines of the type
commonly used in automobiles, trucks, and buses.

These engines differ from the power plants because
the processes occur within reciprocating piston—
cylinder arrangements and not in interconnected series
of different components.

Two principal types of reciprocating internal
combustion engines are:

— the spark ignition engine, and

— the compression-ignition engine
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Two Stroke Engines
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Four Stroke Engines
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Air Standard Analysis
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1. A fixed amount of air modeled as an ideal gas is the working fluid.
2. The combustion process is replaced by a heat transfer from an

external source.

3. There are no exhaust and intake processes as in an actual engine. The
cycle is completed by a constant volume heat transfer process taking

place while the piston is at the bottom dead center position.
4. All processes are internally reversible.

In addition, in a cold air-standard analysis, the specific heats
are assumed constant at their ambient temperature values.




Air Standard Otto Cycles

Process 1-2

isentropic compression of the air as the piston moves
from bottom dead center to top dead center.

Process 2-3

constant-volume heat transfer to the air from an
external source while the piston is at top dead center.
This process is intended to represent the ignition of
the fuel-air mixture and the subsequent rapid
burning.

Process 34
isentropic expansion (power stroke).
Process 4-1

completes the cycle by a constant-volume process in
which heat is rejected from the air while the piston is
at bottom dead center.




Actual vs. Ideal Otto Cycle
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Deviations from ideal cycle

The specific heats of the actual gases increase with an increase in
temperature.

The combustion process replaces the heat-transfer process at high
temperature, and combustion maybe incomplete.

Each mechanical cycle of the engine involves an inlet and an
exhaust process and, because of the pressure drop through the
valves, a certain amount of work is required to charge the cylinder
with air and exhaust the products of combustion.

There is considerable heat transfer between the gases in the
cylinder and the cylinder walls.

There are irreversibilities associated with pressure and
temperature gradients.




Otto Cycle Thermal Efficiency
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Example: Analyzing the Otto Cycle

The temperature at the beginning of the compression
process of an air-standard Otto cycle with a compression
ratio of 8 is 540 °R, the pressure is 1 atm, and the cylinder
volume is 0.02 ft3. The maximum temperature during the
cycle is 3600 °R. Determine:

(a) the temperature and pressure at the end of each
process of the cycle,

(b) the thermal efficiency, and
(c) the mean effective pressure, in atm

net work for one cycle

mep = —;
displacement volume




Air Standard Diesel Cycle
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The only process difference between the Otto and the Diesel
cycles is in the combustion process which is isobaric . The
remaining three processes are the same for both ideal cycles.




Diesel Cycle Thermal Efficiency
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Fig. 9.6 Thermal efficiency of the
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Example: Analyzing the Diesel Cycle

At the beginning of the compression process of
an air-standard Diesel cycle operating with a
compression ratio of 18, the temperature is 300
K and the pressure is 0.1 MPa. The cutoff ratio
for the cycle is 2. Determine:

(a) the temperature and pressure at the end of
each process of the cycle,

(b) the thermal efficiency,
(c) the mean effective pressure, in MPa




Gas Turbine Power Cycle
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Air Standard Brayton Cycle




Brayton Cycle Thermal Efficiency
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Example — Simple Ideal Brayton Cycle

A gas-turbine power plant operating on an ideal
Brayton cycle has a pressure ratio of 8. The gas
temperature is 300 K at the compressor inlet
and 1300 K at the turbine inlet. Utilizing the air-
standard assumptions, determine

(a) the gas temperature at the exits of the
compressor and the turbine,

(b) the back work ratio, and
(c) the thermal efficiency.




Deviation of Actual Gas-Turbine Cycles
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The deviation of an actual gas-turbine
cycle from the ideal Brayton cycle as a
result of irreversibilities.




Example — Actual Brayton Cycle

Assuming a compressor efficiency of 80 percent

and a turbine efficiency of 85 percent,
determine

(a) the back work ratio,

(b) the thermal efficiency, and

(c) the turbine exit temperature of the gas-
turbine cycle discussed in previous example




Regenerative Gas Turbine
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Fig. 9.14 Regenerative air-standard gas turbine cycle.




Regenerator Effectiveness
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Gas Turbines with Reheat
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Compression with Intercooling
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Reheat and Intercooling
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Fig. 9.19 Regenerative gas turbine with intercooling and reheat.



Gas Turbine Based Combined Cycle
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IGCC (Integrated Gasification-Combined Cycle ) Power Plants
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Fig. 9.24 Integrated gasification combined-cycle power plant.




