

Refrigeration System

Outlines

- Introduction
- Overview
- Ideal Vapor Compression Refrigeration Cycle
- PH Diagram

Introduction

Introduction

Introduction

Overview

$$COP_{R} = \frac{Desired output}{Required input} = \frac{Cooling effect}{Work input} = \frac{Q_{L}}{W_{net,in}}$$
$$COP_{HP} = \frac{Desired output}{Required input} = \frac{Heating effect}{Work input} = \frac{Q_{H}}{W_{net,in}}$$

 $\text{COP}_{\text{HP}} = \text{COP}_{\text{R}} + 1$

- Cooling capacity of a refrigeration system = the rate of heat removal from the refrigerated space (expressed in tons of refrigeration)
- The capacity of a refrigeration system that can freeze 1 ton (2000 lbm) of liquid water at 0°C (32°F) into ice at 0°C in 24 h is said to be 1 ton.
- One ton of refrigeration is equivalent to 211 kJ/min or 200 Btu/min.
- The cooling load of a typical 200-m2 residence is in the 3-ton (10-kW) range

(b) Heat pump

Ideal Vapor Compression Refrigeration Cycles

Ideal Vapor Compression Refrigeration Cycles

Ideal Vapor Compression Refrigeration Cycles

P-H Diagram (Propane)

10

An ideal Propane Refrigeration Cycle is used to cool a process stream from 5°C to -35°C. The cycle rejects heat to the environment using a cooling water with the inlet CW temp = 35 °C. If it is assumed that the minimum temperature approach in the exchanger is 5 °C. Determine:

- P-H Diagram Plot
- The Operating Pressure of Propane Evaporator & Condenser
- Duty of Propane Evaporator, Condenser, Compressor, and cycle COP
 - Compare with the results obtained by using property tables (A16 to A18)

P-H Diagram (Propane)

Refrigerant Selection

Refrigerant Classification

*Near-Azeotropes

Used in or considered for Refrigeration

ASHRAE Refrigerant Safety Classification

	Low/No Toxicity	High Toxicity
No Flammability	A1 R11, R12, R22, R125, R134a, R407C, R507, R404A, R410A, R744	B1 R123, R764, R21
Low Flammability	A2 R32, R142b, R143a, R152a	B2 NH ₃
High Flammability	A3 R170, R290, R600a, R1150	B3 R1140

Refrigerants marked in Red are ozone depleting substances that are no longer used in new equipment. Refrigerants marked in Green are natural refrigerants that have low GWP, as well as no ODP.

Refrigerants: Methane Group

Refrigerants: Ethane Group

ODP and GWP for Various Refrigerants

Refrigerant	ODP	GWP	Refrigerant	ODP	GWP
CFC-11	1.0	1.0	HFC-125	0.0	0.84
CFC-12	1.0	3.05	HFC-134	0.0	0.25
CFC-13	N/A	N/A	HFC-134a	0.0	0.25
HCFC-22	0.051	0.370	HFC-143a	0.0	1.2
HFC-23	0.0	N/A	HFC-152a	0.0	0.029
HFC-32	0.0	0.130	R500	0.78	2.39
CFC-113	0.87	1.300	R502	0.245	5.10
CFC-114	0.74	4.150	R503	N/A	N/A
HCFC-123	0.016	0.019	R410A	0.0	0.49
HCFC-123a	0.016	0.019	R507	0.0	0.96
HCFC-124	0.018	0.095			

ODP (Ozone Depletion Potential), and GWP (Greenhouse Warming Potential) are calculated relative to CFC R11.

Refrigerant Comparison

Refrigerant	CO ₂	R12	R22	R134a	R404A	R410A	C ₃ H ₈	NH ₃
Natural?	Yes	No	No	No	No	No	Yes	Yes
Flammable?	No	No	No	No	No	No	Yes	Yes
Toxic?	No	No	No	No	No	No	No	Yes
Relative Cost	0.1	8 2 77	(1.0)	4.0	5.0	5.0	0.3	0.2
Volum. Capacity	4.8	0.6	(1.0)	0.7	1.2	1.5	0.9	1.0
Critical Temp.(F)	88	234	205	214	163	158	206	270
P @ 70F (psia)	852	85	136	86	165	216	125	129
ODP	0	1.0	0.05	0	0	0	0	0
GWP (100yr)	(1.0)	7100	1500	1300	3750	1730	3	0

(1.0) means reference value

Refrigerant Selection

- Two important parameters that need to be considered are the temperatures of the two media (the refrigerated space and the environment) with which the refrigerant exchanges heat.
- To have heat transfer at a reasonable rate, a temperature difference of 5 to 10°C should be maintained between the refrigerant and the medium with which it is exchanging heat.
- If a refrigerated space is to be maintained at -10°C, for example, the temperature of the refrigerant should remain at about -20°C while it absorbs heat in the evaporator.

Refrigerant Selection

☐ Freezing point

Evaporator T should be well above freezing T at operating P

□ Vacuum operation

Evaporator P below atm P should be avoided. (however in some cases is still possible with some precautions)

□ Latent heat of vaporization

Higher latent heat \rightarrow lower flow rate of refrigerant, reduces the compression power

Freezing point at Refrigerant Boiling point at atmospheric atmospheric pressure (°C) pressure (°C) Ammonia -78-33-101Chlorine. -34*n*-butane -1380 -160-12*i*-butane -169-104Ethylene -89Ethane -183-182Methane. -161-182-42Propane -48Propylene -185Nitrogen -210-196

□ General considerations

Always available, nontoxic, non flammable, non corrosive & have a low GHG emission.

- NG processing using C1,C2,or C3 refrigerant
- Olefins plant using ethylene, propylene
- Halocarbons refrigerant are nonflammable

Analyze These...

Cascade Cycle

Exercise – Cascade Cycle

Consider a two-stage cascade refrigeration system operating between the pressure limits of 0.8 and 0.14 MPa. Each stage operates on an ideal vapor-compression refrigeration cycle with refrigerant-134a as the working fluid. Heat rejection from the lower cycle to the upper cycle takes place in an adiabatic counter-flow heat exchanger where both streams enter at about 0.32 MPa. If the mass flow rate of the refrigerant through the upper cycle is 0.05 kg/s, determine

- 1. The mass flow rate of the refrigerant through the lower cycle,
- 2. The rate of heat removal from the refrigerated space and the power input to the compressor, and
- 3. The coefficient of performance of this cascade refrigerator.

Multistage Compression with Intercooling

